Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice
نویسندگان
چکیده
Alzheimer's disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component-presenilin 1 (PS1)-in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression.
منابع مشابه
Proteomic identification of specifically carbonylated brain proteins in APP(NLh)/APP(NLh) × PS-1(P264L)/PS-1(P264L) human double mutant knock-in mice model of Alzheimer disease as a function of age.
Alzheimer disease (AD) is the most common type of dementia and is characterized pathologically by the presence of neurofibrillary tangles (NFTs), senile plaques (SPs), and loss of synapses. The main component of SP is amyloid-beta peptide (Aβ), a 39 to 43 amino acid peptide, generated by the proteolytic cleavage of amyloid precursor protein (APP) by the action of beta- and gamma-secretases. The...
متن کاملAPP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer's disease.
Current evidence indicates that excess brain cholesterol regulates amyloid-β (Aβ) deposition, which in turn can regulate cholesterol homeostasis. Moreover, Aβ neurotoxicity is potentiated, in part, by mitochondrial glutathione (mGSH) depletion. To better understand the relationship between alterations in cholesterol homeostasis and Alzheimer's disease (AD), we generated a triple transgenic mice...
متن کاملMechanisms of Brain Region-Specific Amyloid-beta Deposition
Alzheimer's disease (AD) is the most common cause of dementia. A fundamental feature of AD is brain region-specific deposition of extracellular amyloid plaques principally comprised of the amyloid-β (Aβ) peptide. Using mouse models of cerebral Aβ deposition, we examined molecular, cellular and systems-level mechanisms that regulate brain region-specific Aβ accumulation and aggregation. Parallel...
متن کاملZinc Overload Enhances APP Cleavage and Aβ Deposition in the Alzheimer Mouse Brain
BACKGROUND Abnormal zinc homeostasis is involved in β-amyloid (Aβ) plaque formation and, therefore, the zinc load is a contributing factor in Alzheimer's disease (AD). However, the involvement of zinc in amyloid precursor protein (APP) processing and Aβ deposition has not been well established in AD animal models in vivo. METHODOLOGY/PRINCIPAL FINDINGS In the present study, APP and presenilin...
متن کاملMagnetization transfer contrast imaging detects early white matter changes in the APP/PS1 amyloidosis mouse model
While no definitive cure for Alzheimer's disease exists yet, currently available treatments would benefit greatly from an earlier diagnosis. It has previously been shown that Magnetization transfer contrast (MTC) imaging is able to detect amyloid β plaques in old APP/PS1 mice. In the current study we investigated if MTC is also able to visualize early amyloid β (Aβ) induced pathological changes...
متن کامل